Operações em frações algébricas 

Expressões algébricas que possuem uma incógnita no denominador são o que chamamos de frações algébricas. Na Matemática, a palavra “algébrico” é usada para denominar expressões e operações numéricas que possuem pelo menos um número desconhecido, que chamamos de incógnita. O famoso “descubra o valor de X”.

Qualquer expressão algébrica que, expressa na forma de fração, possua uma letra no denominador é definida como uma fração algébrica. Como ela é formada por números conhecidos ou não, valem as propriedades das operações de números reais para elas.

Leia Também:

Como Aprender As Leis De Newton De Maneira Simples
O que é Notação Científica
Entenda o Processo de Formação do Arco-íris
Entenda o Paradoxo dos Gêmeos
Entenda os Estudos da Óptica

Operações em frações algébricas
Operações em frações algébricas

Multiplicação de fração algébrica

A multiplicação de uma fração algébrica segue o mesmo padrão da multiplicação de frações. Desta forma, basta multiplicar numerador por numerador e denominador por denominador.

De forma prática, podemos multiplicar primeiro os coeficientes, colocando o resultado numérico e partindo para a multiplicação das incógnitas. As incógnitas devem ser multiplicadas por meio das propriedades de potência, da seguinte forma:

4xy·8xz = 32x2yz
 8k  2xk    16k2

Incógnitas diferentes, que aparecem apenas uma vez em um fator, não devem ser multiplicadas entre si, mas apenas repetidas.

Observe que existe uma multiplicação implícita entre números e incógnitas nas frações acima, portanto: 4xy = 4·x·y.

Divisão de fração algébrica

Essa operação é igual à divisão de frações. Portanto, para realizá-la, multiplicamos a primeira fração algébrica pelo inverso da segunda.

4xy:8xz = 4xy·2xk = 8x2yk
 8k  2xk    8k   8xz   64kxz

Operações em frações algébricas
Operações em frações algébricas

Adição e subtração de fração algébrica

A adição e subtração de frações algébricas deve ser dividida em dois casos e é realizada do mesmo modo que a adição e subtração de frações numéricas.

1º caso: denominadores iguais

Se os denominadores forem iguais, realize a operação indicada (soma ou subtração) apenas com os numeradores, repetindo o denominador no resultado:

7xy – 4xy = 7xy – 4xy = 3xy
  x       x            x            x

2º caso: denominadores diferentes

No caso de dominadores diferentes, é necessário igualá-los antes. Para isso, o procedimento é igual ao da soma de frações com denominadores diferentes:

  1. Encontre o MMC dos denominadores
  2. Reescreva o mínimo múltiplo comum encontrado como denominador das frações e encontrar os respectivos numeradores

Observe o exemplo de adição de frações algébricas com denominadores diferentes a seguir

2x2  – 4x
 3y     2y2

O MMC entre 3y e 2y2 é 6y2, logo:

       –       
6y2     6y2

Para preencher as lacunas, basta dividir 6y2 pelo denominador da primeira fração e multiplicar o resultado pelo seu numerador. Isso dará o numerador para a primeira lacuna. Para a segunda, repita o procedimento com a segunda fração.

4x2y – 12x
 6y2     6y2

Operações em frações algébricas
Operações em frações algébricas

Você também pode se interessar por:

Potenciação de fração algébrica

A potenciação de frações é uma extensão da multiplicação de frações. A solução do problema é dada da mesma maneira, porém, os fatores devem ser sempre iguais. Como a multiplicação é feita de numerador para numerador e de denominador para denominador, as potências de frações algébricas são calculadas para numerador e depois para denominador separadamente.

Operações em frações algébricas

Radiciação de fração algébrica

A radiciação funciona assim como a potencialização. Desta forma, quando houver raiz de uma fração algébrica, calculamos a raiz do numerador e do denominador separadamente.

Operações em frações algébricas

Simplificação de fração algébrica

A simplificação de fração algébrica é feita pela eliminação de fatores iguais no numerador e no denominador. Muitas vezes, esses fatores não estão explícitos e precisam de algum cálculo para evidenciá-los.

8x2yk
64kxz

Observe que os fatores x e k aparecem no numerador e no denominador. Entretanto, x está elevado ao quadrado, ou seja x·x, enquanto isso, no denominador, existe apenas um x. Assim é possível simplificar apenas um x do numerador e um x do denominador. O mesmo ocorre com k, resultando em:

8xxyk = 8xy
64kxz    64z

A parte das incógnitas já foi finalizada. Mas ainda podemos simplificar a fração formada pelos coeficientes. O resultado final será:

8xy = xy
64z    8z

**Sempre que frações algébricas forem operadas (multiplicação, divisão, adição, subtração, potenciação e radiciação), é necessário simplificá-las, se for possível.

Quando a fração algébrica envolver polinômios no numerador ou denominador, é necessário partir para um processo de fatoração antes de simplificá-las.

FAQ – Perguntas Frequentes

O que são frações algébricas?

Expressões algébricas que possuem uma incógnita no denominador são o que chamamos de frações algébricas. Na Matemática, a palavra “algébrico” é usada para denominar expressões e operações numéricas que possuem pelo menos um número desconhecido, que chamamos de incógnita. O famoso “descubra o valor de X”.

Como fazer a multiplicação de uma fração algébrica?

A multiplicação de uma fração algébrica segue o mesmo padrão da multiplicação de frações. Desta forma, basta multiplicar numerador por numerador e denominador por denominador.
De forma prática, podemos multiplicar primeiro os coeficientes, colocando o resultado numérico e partindo para a multiplicação das incógnitas. As incógnitas devem ser multiplicadas por meio das propriedades de potência.

Como fazer a divisão de uma fração algébrica?

Essa operação é igual à divisão de frações. Portanto, para realizá-la, multiplicamos a primeira fração algébrica pelo inverso da segunda.

Como fazer adição e subtração em frações algébricas?

Se os denominadores forem iguais, realize a operação indicada (soma ou subtração) apenas com os numeradores, repetindo o denominador no resultado. No caso de dominadores diferentes, é necessário igualá-los antes. Para isso, o procedimento é igual ao da soma de frações com denominadores diferentes:
1 – Encontre o MMC dos denominadores
2 – Reescrever o mínimo múltiplo comum encontrado como denominador das frações e encontrar os respectivos numeradores

Como fazer a potencialização de frações algébricas?

A potenciação de frações é uma extensão da multiplicação de frações. A solução do problema é dada da mesma maneira, porém, os fatores devem ser sempre iguais. Como a multiplicação é feita de numerador para numerador e de denominador para denominador, as potências de frações algébricas são calculadas para numerador e depois para denominador separadamente.

Como fazer a radiciação de uma fração algébrica?

A radiciação funciona assim como a potencialização. Desta forma, quando houver raiz de uma fração algébrica, calculamos a raiz do numerador e do denominador separadamente.

Gostou do conteúdo? Que tal dar uma olhadinha em outros assuntos?

Não se esqueça de nos seguir nas redes sociais para ficar por dentro de tudo!

Deixe um comentário